

Investigating

 $|\sqrt{}|$

Communicating

Knowledge and understanding

Exploring patterns in inheritance

Learning outcomes in focus Students should be able to:

NS4 produce and select data (qualitatively/ quantitatively), critically analyse data to identify patterns and relationships, identify anomalous observations, draw and justify conclusions

BW2 describe asexual and sexual reproduction; **explore patterns in the inheritance** and variation of genetically controlled characteristics

Learning intentions We are learning to:

- produce data, draw justified conclusions from the data, discuss and thereby re-evaluate scientific data
- identify patterns in inherited data and begin to recognise how the environment can affect inheritance

Background

This task was given to first year students after two one hour lessons on genetics. They understood the gene pair method of inheritance, and were familiar with the terms recessive, dominant and co-dominant, they had experience of using simple punnet squares to predict off-spring. The class had prior experience of tabulating results in other contexts.

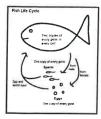
Task

We are going to experiment with genes and environment for a population of "toothpick" fish. We will work in pairs. You will learn about the relationships between many different aspects of fish life: genes, traits, variation, survival, and reproduction. The activity here is a simulation, but it models the way fish and other organisms live in nature. Adapted from 'Toothpick Fish', The Genetics Project, University of Washington goo.gl/OQC8GE

Success criteria:

I can:

- SC1: follow instruction to produce data
- **SC2**: fill in tables correctly and in full
- SC3: identify patterns in relation to inheritance
- **SC4**: draw conclusions from the data
- SC5: justify conclusions, were relevant relates conclusions to the environment



Exploring patterns in inheritance: Example 2

Page 1

23 October 2015

09:41

We are going to experiment with genes and environment for a population of "toothpick" fish.

We will work in pairs but everyone must fill out the document.

You will learn about the relationships between many different aspects of fish life: genes, traits, variation, survival, and reproduction. The activity here is a simulation, but it models the way fish and other organisms live in nature.

You have a gene pool (petri dish) You have 24 gene alleles (tooth picks)

Introduction

The coloured toothpicks represent three different forms of a gene (green, red, and yellow) that controls one fish trait: skin colour.

The table below tells you which forms (alleles) of the gene are dominant, which are recessive, and which are equal (or co-dominant).

The green gene (G) is	• dominant to all other color genes				
The red gene (R) is	• recessive to green • equal ("co-dominant") to yellow *				
The yellow gene (Y) is	• recessive to green • equal ("co-dominant") to red *				

^{*} Combining red and yellow genes results in a fish with orange skin color.

REMEMBER: EACH TOOTHPICK REPRESENTS A GENE, NOT A FISH.

Task

Count your toothpicks to make sure you have 8 of each colour for a total of 24 toothpicks.

2. Figure out which gene combinations give rise to which fish colours and \Box Fill in the answers on the table on the next page.

Fish Color	Gene combinations			
Green	e.g. GG, G R G Y			
Red	SP. RR.			
Yellow	YY			
Orange	YR. PY			

Exploring patterns in inheritance: Example 2

P3

Page 2

20 October 2015

11:23

Based on the answers you gave in the table above, answer the questions below. (You may use Punnett Squares if you wish.)

a. Can two red fish mate and have green offspring? Why or why not?

No because green is dominate to real.

b. Can two orange fish mate and have red offspring? Why or why not?

Yes because the orange is made up of

Yellow and red genes and red & gellow are

co-dominant.

c. Can two green fish mate and have orange offspring? Why or why not?

We because green is dominant and can't mix with another gene to form orange.

3. Make a first generation of fish. To do this, pull out genes (toothpicks) in pairs without looking and set them aside carefully so that they stay in pairs. Once you have drawn your twelve pairs (do not move the pairs), record the results in Table A first generation section.

Table A. Gene Pairs and Resulting Fish Colors in Generations 1-4

	First Gene/Second Gene				Resulting Fish Color			
Offspring	/ G E N E R A T O N							
	1st	2nd	3rd	4th	lst	2nd	3rd	4th
example	G/R			W. S.	green	ALC: N		12.17
1	GR	GY	GR	GR	9 reeu	green	areen	green
2	RY	GR	RY	GR		green		chul
3	44	GG	96	GR	uollas			arean
4	GR	RR.	UR	GY	Loon	red	oranao	Breek
5	GY	GY	UG	RR	green	green	areen	red
6	44	GR	RR	QV	Hellow	neven	red	orange
7	GR	RR	UB	W	green	hed	orenge	ep Mou
8	GR	GY	GR	C/YR	green	oreen	aroen	ansen
9	66	GR	GG	96	O.	7.1	aneen	anoren
10	RY	MARY	GR	GR	1	oranar	areen	gwan
11	GU				aven		0	U .
12	1218				Red			

Identified patterns in a and b correctly but not in part c.

SC4: Draw conclusions from the data.

SC5: Justify conclusions.

SC1: Follow instruction to produce data.

SC5: Fill in tables correctly.

Exploring patterns in inheritance: Example 2

P4

Page 3

20 October 2015 11:23

in take y

Count the numbers of each colour of fish offspring and record the numbers in Table B where it says first generation.

Toothpick Fish

Table B

Table B. Offspring Color for Toothpick Fish Generations

Environment	Generation	Green	Red	Orange	Yellow
There is lots of green seaweed	First	7		2	2
growing everywhere.	Second	7	2	i	0
	Third	6	j	3	0
The seaweed all dies and leaves bare rocks and sand.	Fourth	7		I	
	Fourth (survivors)	0	l	L	1

The stream where the fish live is very green and lush with lots of vegetation and algae covering the streambed and banks. The green fish are very well camouflaged from predators in this environment and the red and orange fish fairly well camouflaged also. However, none of the yellow fish survive or reproduce because predators can easily spot them in the green algae environment.

If you have any yellow fish (fish in which both toothpicks are yellow), set those toothpicks aside (These are now dead).

Put all the genes you have left back in the gene pool (remember, you have set aside any yellow fish).

Draw a second generation of fish, again without looking.

Record your gene pairs and fish colour in Table A under 2nd generation.

Total up the fish of each colour and record the numbers in the second generation row in Table B.

🗹 Set aside yellow fish and return surviving fish to the cup.

6.

The well-camouflaged fish live longer and therefore have more offspring, so their numbers are increasing.

Draw toothpicks to make a third generation of fish. Record your data in Table A.

and then write in the total numbers of each colour in the third generation row of
Table B

Now return survivors to the gene pool (be sure to set aside any genes from yellow offspring).

SC2: Fill in tables correctly.

Exploring patterns in inheritance: Example 2

P5

Page 4

23 October 2015 09:46

STOP HERE. DO NOT PROCEED TO STEP 7. DISCUSS and answer THE FOLLOWING THREE QUESTIONS WITH YOUR PARTNER AND WAIT and then as a class group.

a) Have all the yellow genes disappeared?

b) Has the population size changed? In what way? Would you expect this to occur in the wild?

Ges because we have less yellow fish and yes because eat fish and if they camoflage they won't see them but if they don't they will see them and eat them.

c) Apart from size how does the population in the third generation compare to the population in the earlier generations?

The number of yellow fish decreased because they died.

7. Draw more pairs of genes to make a fourth generation of fish. Record the data in. Tables A and

Tables B. Do not remove yellow fish.

STOP! An environmental disaster occurs. Factory waste harmful to algae is dumped into the stream, killing much of the algae very rapidly.

The remaining rocks and sand are good camouflage for the yellow, red, and orange fish. Now the green fish are easily spotted by predators and can't survive or reproduce.

8.Because green fish don't survive, set them aside. Now record the surviving offspring (all but

the green) in the last row of Table B (fourth generation survivors row). <u>Contribute</u>

your final

data on the class tally on the projector. Copy the results into the table here:

SC3: Identify patterns,Yellow gene still present

Draws a conclusion for each colour of fish and for the population in general.

Sc5:
Justify conclusions
for this sample
only does not
properly consider
populations in the
wild.

Exploring patterns in inheritance: Example 2

P6

Identify changes

in population and

Draw conclusions from the data: they conclude that the green genes disappeared

because there was more of them rather than because it was dominant.

> SC5: Justifies

conclusion, explains the disappearance and relate it to the changing environment and the ability of the fish to camouflage.

genes

Page 5

20 October 2015

Table C. Fish surviving the pollution disaster: pooled data

Fish Color	Green	Red (RR)	Orange (RY)	Yellow (YY)
1	0		1	(7)
2	0	2	3	O
3	0	1.	2	1
4		1.	2	
5	0	1	2	0
6	0	2	2	0
7	0	3.	0	2
8	0	8		4
9		1	t	
10	4	21	2	0
Totals	(*)	12	13	5

Fill in table on overhead, one line of data per group. Total results in bottom line.

After examining the data for the entire class, discuss the following questions with your partner.

a. Has the population changed compared to earlier generations? How? The population has changed compared to earlier generations because, as there are less yellow genes there are less yellow genes there are less yellow bish and # because of the environmental b. Have any genes disappeared entirely? Yes the green genes have dissapeared & entirely due to the environmental disaste

c. Yellow genes are recessive to green; green genes are dominant to both red and yellow. Which colour of genes disappeared faster when the environment was hostile to them? Why?

Green genes dissapeared faster because of the environmental disaster. Due to the fact that the greens genes, there were more of them and when the environmental disaster occurs the green fish could no longer camoflauge and were casily spotted by predators.

New Section 1 Page 5

Overall judgement: Above expectations

Exceptional

