Puzzling Pathways Abstraction — Algorithm — Pseudo-Code NCCA

The 2 paths that visit all nodes once are : [1,2,3,5,4,6] and [1,2,5,3,4,6]

Abstraction

We want to develop an algorithm that will give us a general solution to this
problem, so that we can simply change the network and run our program to
solve the problem.

Some of the key components of the problem are :

There are objects called nodes. 6 in this example.

Each node has a name and a list of other nodes to which you can
travel.

There is a start node (nodel) and an end node (nhode6).

Once we leave a node to travel to a new node, the problem is really
just a sub-problem i.e. similar but smaller.

There are many paths that can go from the start to the end but we are
only interested in paths that go through all (6) nodes.

Writing your Thinking

Take 2 minutes to think about how you tackled this problem.

> Did you use pen and paper to help visualise

possible solutions?

» Did you draw a diagram to represent the problem?
> Did you find a few different solutions, some

Hamiltonian and some shorter? How many
paths go from start to end while only visiting a
node once?

» Did you use Trial and Error to investigate possible

solutions?

> Did you verify your solution?

Using Think-Pair-Share-Square (TPSS), go through how you and your partner
were thinking about how to solve the problem.

Write an algorithm to solve this problem in a
computational way.

Try to write a version of your algorithm in pseudo-code.




Puzzling Pathways Abstraction — Algorithm — Pseudo-Code NCCA

Pseudo-Code

Set up the network by creating 6 nodes with their numbers and connected
nodes, &c. (use dictionaries to store the attributes)

Assign the startNode and endNode. Initialise the list of possible paths.
Travel the Network (firstNode, currentPath) {
Add the firstNode to the currentPath;

If we are at the endNode then {
Store the currentPath in a finalPathList
Return
b
For each node in the connected nodes list {

If the node is in the currentPath do Nothing

Else Travel the Network (node, currentPath)

by

Return

b
For each element of the finalPathList {
print out the paths that are the same length as the network list.

(and possibly also draw an animated version of the solution)

¥

@y Note \

The pseudo code above is using a Recursive Algorithm, which you will have
learned how to use in previous lessons.

Problems that can be solved using recursion have 2 key features:

1. They break down into identical sub-problems
o .. each sub-network within the main network is identical in every
way, only smaller.
2. They have a terminating condition (base case)

K o ... is the current node the endNode? /




