
Puzzling Pathways Abstraction – Algorithm – Pseudo-Code NCCA

The 2 paths that visit all nodes once are : [1,2,3,5,4,6] and [1,2,5,3,4,6]

Abstraction

We want to develop an algorithm that will give us a general solution to this

problem, so that we can simply change the network and run our program to

solve the problem.

Some of the key components of the problem are :

• There are objects called nodes. 6 in this example.

• Each node has a name and a list of other nodes to which you can

travel.

• There is a start node (node1) and an end node (node6).

• Once we leave a node to travel to a new node, the problem is really

just a sub-problem i.e. similar but smaller.

• There are many paths that can go from the start to the end but we are

only interested in paths that go through all (6) nodes.

•

Writing your Thinking

Take 2 minutes to think about how you tackled this problem.

➢ Did you use pen and paper to help visualise

possible solutions?

➢ Did you draw a diagram to represent the problem?

➢ Did you find a few different solutions, some

Hamiltonian and some shorter? How many

paths go from start to end while only visiting a

node once?

➢ Did you use Trial and Error to investigate possible

solutions?

➢ Did you verify your solution?

Using Think-Pair-Share-Square (TPSS), go through how you and your partner

were thinking about how to solve the problem.

Write an algorithm to solve this problem in a

computational way.

Try to write a version of your algorithm in pseudo-code.

Puzzling Pathways Abstraction – Algorithm – Pseudo-Code NCCA

Pseudo-Code

Set up the network by creating 6 nodes with their numbers and connected

nodes, &c. (use dictionaries to store the attributes)

Assign the startNode and endNode. Initialise the list of possible paths.

Travel the Network (firstNode, currentPath) {

 Add the firstNode to the currentPath;

 If we are at the endNode then {

 Store the currentPath in a finalPathList

 Return

}

 For each node in the connected nodes list {

 If the node is in the currentPath do_Nothing

 Else Travel_the_Network (node, currentPath)

 }

Return

}

For each element of the finalPathList {

print out the paths that are the same length as the network list.

(and possibly also draw an animated version of the solution)

}

Key Note

The pseudo code above is using a Recursive Algorithm, which you will have

learned how to use in previous lessons.

Problems that can be solved using recursion have 2 key features:

1. They break down into identical sub-problems

o .. each sub-network within the main network is identical in every

way, only smaller.

2. They have a terminating condition (base case)

o … is the current node the endNode?

