
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/288002756

Do	we	know	how	difficult	the	Rainfall	Problem
is?

Conference	Paper	·	November	2015

DOI:	10.1145/2828959.2828963

CITATIONS

11

READS

248

5	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Gaze	in	Programming	View	project

Infrastructure	for	Computer	Science	Education	View	project

Otto	Seppälä

Aalto	University

19	PUBLICATIONS			774	CITATIONS			

SEE	PROFILE

Petri	Ihantola

Tampere	University	of	Technology

54	PUBLICATIONS			565	CITATIONS			

SEE	PROFILE

Juha	Sorva

Aalto	University

32	PUBLICATIONS			444	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Juha	Sorva	on	04	March	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/288002756_Do_we_know_how_difficult_the_Rainfall_Problem_is?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/288002756_Do_we_know_how_difficult_the_Rainfall_Problem_is?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Gaze-in-Programming?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Infrastructure-for-Computer-Science-Education?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otto_Seppaelae?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otto_Seppaelae?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aalto_University?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otto_Seppaelae?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petri_Ihantola?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petri_Ihantola?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tampere_University_of_Technology?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Petri_Ihantola?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juha_Sorva?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juha_Sorva?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aalto_University?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juha_Sorva?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juha_Sorva?enrichId=rgreq-5d91de806b29bde499ad28530f6e6dce-XXX&enrichSource=Y292ZXJQYWdlOzI4ODAwMjc1NjtBUzozMzU5MDk2NDkxNzQ1NTlAMTQ1NzA5ODUwOTQ3MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Do We Know How Difficult the Rainfall Problem is?

Otto Seppälä
Aalto University
Espoo, Finland

otto.seppala@aalto.fi

Petri Ihantola
Tampere University of

Technology
Tampere, Finland

petri.ihantola@tut.fi

Essi Isohanni
Tampere University of

Technology
Tampere, Finland

essi.isohanni@tut.fi
Juha Sorva

Aalto University
Espoo, Finland

juha.sorva@aalto.fi

Arto Vihavainen
University of Helsinki

Helsinki, Finland
avihavai@cs.helsinki.fi

ABSTRACT
The programming task known as the Rainfall Problem has
developed a reputation for being surprisingly difficult for
introductory-level (CS1) students. We contribute a survey
of studies of the problem as well as a new study of students’
solutions collected at three institutions. In all three CS1s, at
least about half of the students were able to fully solve the
problem and the large majority were at least close. Failure to
handle invalid or missing input accounted for most bugs. Our
survey and study together suggest that the Rainfall Prob-
lem is not necessarily overwhelmingly difficult: Success rates
vary and some reasonably good results have been achieved
under multiple programming paradigms. We provide a break-
down of confounding factors and suggest improvements and
hypotheses for future studies of the Rainfall Problem.

CCS Concepts
•Social and professional topics → CS1; Student as-
sessment;

Keywords
Rainfall Problem, novice programmers, CS1, benchmark

1. INTRODUCTION
The Rainfall Problem is a programming task that has been

used in a number of studies of programming ability over the
past few decades. Here is one variant of the problem: “Write
a program that processes an input consisting of daily rainfall
measurements (non-negative integers) until it encounters the
integer 99999. The program should output the average of the
numbers encountered before 99999.”

The Rainfall Problem is straightforward enough that many
educators have expected their students to be able to solve
it at the end of an introductory programming course (CS1).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Koli Calling 2015, November 19 - 22, 2015, Koli, Finland
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4020-5/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2828959.2828963

Contrary to such expectations, however, some studies have
reported unsatisfactory student performance, a fact that is
sometimes used to illustrate the scale of the challenge faced
by students and teachers of programming. In 2011, Guzdial
commented on the literature on the Rainfall Problem, much
of which dates from the 1980s:

“In one study, only 14% of students in Yale’s CS1 could
solve this problem correctly. The Rainfall Problem has
been used under test conditions and as a take-home
programming assignment, and is typically graded so
that syntax errors don’t count, though adding a negative
value or 99999 into the total is an automatic zero. Every
study that I’ve seen (the latest in 2009) that has used the
Rainfall Problem has found similar dismal performance,
on a problem that seems amazingly simple.” [7]

This sentiment has been echoed by other researchers (e.g.
[19, 27]):

“The general conclusion is that large numbers of stu-
dents are still making the same sorts of error that they
were making 30 years ago.” [19]

“Students struggle with this problem today as they did in

1982.” [27]

Two recent studies of novice programmers’ performance on
the problem [19, 6] have reported contrasting results, leading
researchers to hypothesize on the impact of GUIs in CS1,
design-driven pedagogy, functional programming, and other
factors. Failing to locate a survey of success rates that would
help us assess claims about Rainfall, we conducted our own,
which we report on here. We wished, furthermore, to examine
CS1 students’ Rainfall performance at our home institutions
and thereby to add to the existing pool of empirical studies.

The first two of our research questions, below, pertain
to the literature review and the other two aim to partially
replicate earlier studies at different institutions:

RQ1 What success rates have been reported on the Rainfall
Problem?

RQ2 Which factors vary between the Rainfall studies?

RQ3 To what extent do CS1 students at our universities
succeed in solving the Rainfall Problem?

RQ4 Which subgoals of the problem prove the most difficult
for students at our universities?

87

The next section outlines the theoretical framework which
inspired the original research on the Rainfall Problem and
also impacts on the present work. Section 3 presents the
results of a literature survey that addresses our first research
question. In Section 4, we outline our empirical study, whose
results we then present in Section 5. In Section 6, we discuss
our findings. Section 7 concludes the article.

2. SCHEMAS, GOALS, AND PLANS
In cognitive psychology, a schema is a mental structure that

contains generic conceptual knowledge [14]. Solution patterns
can be stored in long-term memory as schemas, which people
draw on as they encounter new situations and solve problems.
Such problem-solving schemas provide “canned” solutions
which may be applied to new instances of a familiar class
of problems. The formation of problem-solving schemas is
a crucial aspect of the growth of expertise: Experts have
numerous schemas for a wide variety of problems which they
can retrieve from long-term memory and combine to solve
complex problems without experiencing cognitive overload.

A number of studies support the idea that programmers
make use of schemas as they read and write programs (e.g.,
[15, 23, 21, 18, 3, 1]). For instance, Rist’s [18] studies suggest
that programmers use top-down, forward-developing (i.e.,
linear writing), breadth-first strategies for writing programs
whenever possible, that is, whenever they can apply an exist-
ing schema to a goal or subgoal. Novices have few schemas
and are often forced to rely on bottom-up strategies.

In the 1980s, Elliot Soloway and his colleagues approached
computing education research from a perspective inspired by
schema theory. They analyzed programs and programmer
behavior in terms of the goals and subgoals that the pro-
grammer was trying to achieve, and the plans and subplans
that provide the corresponding solutions [20, 26, 25, 2]. The
Rainfall Problem can be analyzed in terms of the following
subgoals, for which we use, throughout this article, the same
names as Fisler [6]:

Sentinel Process input until the sentinel.

Negative Ignore negative inputs.

Sum Total the inputs.

Count Determine the number of the inputs.

DivZero Handle cases with zero inputs.

Average Compute the average.

Any of a number of subplans can be used to address a
subgoal. For example, the subgoal Sum may be addressed by
incrementing the value of a variable within a loop or by using
the sum method of a list. Subplans are “glued together” in
different ways, such as abutment, nesting, and merging [20].

This article relates to Soloway’s work on programming
plans in three ways. First, the particular task that we in-
vestigate, the Rainfall Problem, originates from Soloway’s
studies of plans. Second, we use the concepts of goal and
plan as tools for the post-hoc analysis of students’ programs.
And third, Soloway’s group provided the first empirical re-
sults that showed how students struggled with Rainfall. We
discuss these findings next.

3. SURVEY: NOVICES AND RAINFALL
In this section, we review earlier studies of the Rainfall

Problem. We limit our survey to studies in which the partic-
ipants were novice programmers (typically first-year univer-
sity students) and which report success rates on the problem.

In several of the studies reviewed, the success rates were
incidental to, rather than its main focus of, the study.

Let us begin by discussing variations of the problem. We
will then describe each study that falls within the scope of
our review before summarizing the answers to our first two
research questions.

3.1 Variations of the Rainfall Problem
Different names have been used for the Rainfall Problem

in the literature, including “Rainfall Problem,”“Averaging
Problem,” and “Noah Problem.” Moreover, there is no stan-
dard form of the problem that these names refer to; instead,
there are many variations with somewhat different require-
ments. Below, we describe the main variations. Table 1
provides a detailed mapping of the studies to the variants.

The most well-known version of the problem asks the stu-
dent to filter out negative inputs. Some variants do not have
this requirement. In yet other variants, negative numbers
count as zeros or sentinels. Some of the problem statements
are vague about how to handle invalid inputs.

The original Rainfall Problem is based on console I/O
and requires a full program to be written, but some recent
variants instead request a function that receives a collection
of input data as a parameter.

Most variants require Sentinel, but a version in which this
subgoal was optional has also been used.

Some variants include additional statistics to be produced
besides the average, such as maximum rainfall or the number
of rainy days.

Non-functional aspects of the problem statements also vary
significantly, as do external constraints. For instance, are
example runs or tests provided and for which cases? Are
students required to write their own tests? Is the problem
answered on paper or on the computer? Does the student
have access to a book or the Internet? Can they ask for help
from others? Is there a time limit?

3.2 Rainfall Studies
This subsection briefly describes each of the studies in-

cluded in our review. Selected aspects of these studies are
more systematically summarized in Table 1.

3.2.1 Early Studies: 1980–2000
The Rainfall Problem was introduced in the early 1980s as

one of three“simple looping problems” typical of introductory
programming courses [24]. Soloway and his colleagues used
it in a non-credit quiz at the end of CS1 and found that of
31 participants, only 23 produced an answer and that only
nine of those answers were correct [24]. The performance
of students taking a second programming course (CS2) was
only marginally better.

The authors hypothesized that looping strategies play a
role in the outcomes and subsequently evaluated this claim
by posing the problem to two groups of CS1 students [22].
In a group using regular Pascal, eight of 58 CS1 students
(14%) solved the problem. In another group that used a
custom variant of Pascal designed to make looping more
intuitive, 14 of 58 students (24%) succeeded. The experiment
was also carried out in CS2, where the students performed
better, reaching success rates of 36% and 61%, respectively.
Although the treatment group had somewhat more detailed
materials available than the control group, these results
support the hypothesis that the enhanced version of Pascal

88

was beneficial.
Johnson et al. [13, 12] subsequently used a challenging

variant of the Rainfall Problem as they evaluated a method
for automatically identifying bugs in programs produced by
novices. Of the participating CS1 students, 11% solved the
problem correctly. In the analysis of Johnson et al., problems
with reading or printing values also counted as bugs, as did
“spurious” (unnecessary) code.

In 1994, Ebrahimi [4] investigated novice programmers’
errors and plan compositions, comparing four groups of stu-
dents who had been instructed using different programming
languages. Ebrahimi, too, assessed the students’ solutions
to a challenging Rainfall variant in a strict way: Students
were penalized not only for bugs in functionality but also
for spurious and inefficient code. Ebrahimi reported success
rates of 5%, 20%, 20%, and 15% for Pascal, C, Fortran, and
Lisp programmers, respectively.

3.2.2 Recent Studies: 2001–2014
In 2003, Guzdial et al. [9] reported results from an evalua-

tion that included an easy variant of the Rainfall Problem.
Fourteen of 113 students (12%) solved the problem correctly
and the average partial score was 46%. The course being
studied was a newly launched offering for students who did
not major in CS or engineering, and the Rainfall Problem
was atypical for this course.

De Raadt [2] used the Rainfall Program in the context of
pattern-oriented instruction. One group of students received
no explicit instruction on problem-solving strategies (i.e.,
patterns similar to those required for Rainfall). Another
group, studied four years later, did. Only one student out of
42 (2%) in the first group fully solved the problem; eleven
(26%) were at least close, with at most one missing subplan.
In the second group, the corresponding figures were 31% and
49%. On the basis of these results, De Raadt argued that
explicit teaching of problem-solving strategies improves CS1
outcomes.

Venables et al. [29] used a variant of the problem in the
context of a 2009 study of code-tracing, explaining, and
writing skills. Their results indicate that six of 32 CS1
students (19%) had a fully correct solution and a seventh
student was close.

Simon [19] studied the Rainfall Problem in the context
of event-driven programming. He asked students to solve a
function variant of the problem under exam conditions with
very limited time available. None of the 149 students had a
fully correct solution, and the average partial score for the
question was 23% [19].

Porter et al. [17] investigated whether students’ CS1 per-
formance could be predicted from their answers to clicker
questions. As a by-product of this investigation, they report
on students’ performance on a two-part assessment that con-
sisted of the Rainfall Problem and a separate, simpler task.
The authors do not provide figures concerning Rainfall alone
but they do report that the students’ median score was 8
out of 10 points on the combined task.

Fisler [6] studied students’ solutions to a function-based
variant of the Rainfall Problem using a method similar to that
of Ebrahimi [4]. The solutions were collected from multiple
institutions and CS1 courses at the university and high school
levels. Pooled together, roughly half of the students solved
the problem fully correctly, using a variety of strategies
for composing subplans. There were significant differences

between the contexts studied by Fisler but they all shared a
pedagogical approach based on functional programming and
systematic program design and testing [5].

3.3 RQ1: Overview of Success Rates
Table 2 shows novices’ success rates on the Rainfall Prob-

lem as reported in the literature. As the table indicates,
many of the students in Fisler’s study [6] succeeded in pro-
ducing a bug-free Rainfall solution. The results reported
by Porter et al. [17] also suggest that the problem was not
overwhelming. De Raadt’s [2] experiment showed a sizable
gain in student success as a result of pattern-oriented instruc-
tion. The success rates reported in the other studies could
be described as worrying, if we make the assumption that
the Rainfall Problem has been an appropriate assessment for
the students the stage of learning that was investigated by
the researchers.

Several of the reported success rates are low, but overall,
we would describe the results as mixed. The variation in the
figures is difficult to explain because of the different variants
of the problem (see above) and other differences between the
studies (see below).

3.4 RQ2: Variation in the Rainfall Studies
As Table 1 illustrates, there is an immense amount of

variation between the various studies that have reported
success rates on Rainfall. Different problem statements aside,
the studies also differ in terms of the conditions under which
students undertook to solve the problem, the courses that
were studied, student demographics, and the way researchers
analyzed the solutions, among other things.

Of the studies within the scope of our review, only two
experimented on a single variable within the same pedagog-
ical context: The study by Soloway et al. [22] highlighted
the usefulness of a particular looping construct for solving
Rainfall, and the study by de Raadt [2] supports explicit
instruction in problem-solving strategies. In addition, some
of Ebrahimi’s [4] results may be attributable to different
programming languages. We found no comparisons of, say,
Rainfall performance in paper vs. computer exams. The
number of studies is not sufficient for conducting a quantita-
tive meta-analysis.

Moreover, many of the pedagogical contexts are very
loosely outlined in the articles. Although it is not possi-
ble report on every variable in detail, there are measures
such as CS1 workload that can be quantified but which have
not been reported. This makes comparisons more difficult
still.

To summarize, we have been able to identify a number of
factors that differ between the studies of the Rainfall Problem
and that may influence success rates. Nevertheless, we must
conclude that the extant literature does not enable us to
draw firm conclusions concerning the relative importance of
these factors.

4. DESIGN OF THE EMPIRICAL STUDY
In this section, we describe the version of the Rainfall

Problem that we used, the three courses that we studied,
and the way we collected data and analyzed it.

4.1 Version of the Rainfall Problem
Students were asked to print out the average or report

that it could not be computed. They were to accept but

89

Table 1: Contexts and variation in studies with novices solving the Rainfall problem
So

ur
ce

C
oh

or
t

A
V

ER
A

G
E

N
EG

A
TI

V
E

SE
N

TI
N

EL

D
IV

ZE
R

O

R
ep

or
tr

ai
ny

da
y

co
un

t

R
ep

or
tm

ax
/m

in
ra

in
fa

ll

P(
ro

gr
am

)/F
(u

nc
tio

n)

In
pu

t

N
ot

es

R
ea

ct
in

g
to

no
in

pu
t

Ex
am

pl
e

ru
ns

/
in

pu
td

at
a

Te
st

s

Le
ve

l

W
ee

k
co

nd
uc

te
d

/W
ee

ks
in

co
ur

se
O

R
fr

ac
tio

n
of

C
ou

rs
e/

Se
m

es
te

rl
en

gt
h

Pr
og

ra
m

m
in

g
la

ng
ua

ge

Pa
ra

di
gm

I (m
pe

ra
tiv

e)
/F

(u
nc

tio
na

l)

Pe
da

go
gi

ca
lc

ho
ic

es

W
he

n
S(

pr
in

g)
/F

(a
ll)

/
*

Pu
bl

ic
at

io
n.

Y
ea

r

C
ou

rs
e

co
nt

en
tv

s.
R

ai
nf

al
l

St
ud

en
ts

'm
aj

or

Pa
st

pr
og

ra
m

m
in

g
ex

pe
rie

nc
e

Context 1 Y Y Y Y N N P C print ANSD - CS1 W9/9 Python I S2013 EP various Engin. mostly none

Context 2 Y Y Y Y N N P C print ANSD - CS1 W7/7 Java I10) F2014 P 36% CS 17)

Context 3 Y Y Y Y N N P C print ANSD GA CS1 W5/14 Python I F2014 EP 55% CS mostly none

T1 CS1 W13 Racket, Ocaml F HtDP F2013 ? CS ?
T1Acc CS1 W13 Racket, Pyret F HtDP F2013 ? CS ?
T2 CS1 W10 Racket F HtDP F2013 ? CS ?
T3Non CS1 W10 Racket F HtDP F2013 ? Non-CS ?
HS CS1 W18 Racket F HtDP F2013 ? High School ?

Porter et al. [17] Y S S Y N N P C 1, 3) unspec. ASD4) - CS1 W12/12 Python I 11) 2013 ? ? ?
Simon [19] Y Z Y Y N N F A 2) unspec. NS - CS1 ES C# I 12) 2013* X IT ?

Venables et al. [29] Y S S Y N N P C print ANSD - CS1 ES? Java I ? 2009* ? ? ?
2007 CS1 ? C I 13) 2007 EP mainly IT, Engin ?
2003 CS1 6) C I ? 2003 ? mainly IT, Engin ?

Guzdial et al. [9] Y Y O Y+L ? N N F L 3) unspec. NS - CS1 7) Python I 14) S2003 15) Non-CS ?
Pascal CS1 W6/S Pascal I ? EP? ? -
C post CS1 W4/S C I ? EP? ? some
Fortran post CS1 W4/S Fortran I ? EP? ? some
Lisp post CS1 W4/S Lisp I ? EP? ? some

Y Y Y Y Y Y P C unspec. - - CS1 ? Pascal I ? 1983* ? ? none
Nov.-Pascal CS1 ¾ S Pascal I ? 1983* 16) ? ?
Nov.-Pascal-L CS1 ¾ S Pascal-L9) I ? 1983* 16) ? ?
Adv.-Pascal CS2 ⅔ CS2 Pascal I ? 1983* ? ? 1 course
Adv.-Pascal-L CS2 ⅔ CS2 Pascal-L9) I ? 1983* ? ? 1 course
Novices CS1 ES8) Pascal I ? 1982* ? ? none
Intermediates post CS15) W10/16 Pascal I ? 1982* ? ? 1 course

Y Course
N E Course contains examples similar to Rainfall.
Z 5) 2nd course in programming (data str.) P Course contains problems similar to Rainfall.
I Timing X Rainfall was modified to better match content.
S S Semester W Week ES End of Semester

6) Third last week 15) List processing had not been covered.
7) 2nd Midterm 16) had exp. with while and other loop constructs.
8) Final week of a summer session course
Language / Pedagogy

C/A/L HtDP How to Design Programs 17) 56% never programmed before
P/F 9) Pascal with modified loop constructs 33% programmed little, median ~100h

10) Object-oriented 11% programmed more, median ~200h
1) 11) Peer Instruction, Pair Programming, Contextualization, Clickers
2) General 12) GUI-driven
3) 13) Explicit strategy instruction (including guarded div)

14) Media Computation

Variant of the Rainfall Problem Problem Statement Pedagogical Context Student Demographics

Y I Y Y N

Y I Y N

-

Y Y Y Y Y Y P C

N P C unspec. -

Input from Console/Array/List
What to implement: Program/Function mated tests with partial

 coverage and limited feedback.
Using lists, tuples, or dictionaries not allowed. T Expected students to submit tests

Tests

The problem definition was ambiguous about ? Not reported / Unknown
zeros as values. - None

Fisler [6]

De Raadt [2]

Ebrahimi [4]

Soloway et al. [22]

Previous programming experience

Y+L
Unspec. The student decides.
4) All negative values were

O
sentinels

Negative values were included as zeros. N negative values
Negative values were included in the total. S a sentinel value
All negative values acted as sentinels. D no non-negative input

? -

The plan was required in its standard form. Examples shown contained:

Soloway et al. [24]

This Article

Johnson et al. [12, 13]

Either the sentinel or the end of the list
terminates input
The students could choose whether to implement
SENTINEL

Y+LYY

Using a for loop was not allowed.

The plan was not required in this variant.

Y I Y N N N P

N N P C

C

se
e

th
e

bo
dy

te
xt

GA Students were given auto-

LFNNY unspec. ? T

Course content vs. Rainfall
A the resulting average

- -unspec.
but not

required
either

unspec. ANS? - 1994*

ignore negative inputs. Two annotated example outputs
were given: 1) a run with three positive inputs, a zero, and
a negative number before the sentinel; 2) a run in which
the sentinel was the first and only input. Students did not
need to use exactly the same output formatting as in the
examples, except in Context 3 where automatic assessment
was provided for Rainfall.

4.2 Contexts and Data Collection
Solutions to the Rainfall Problem were collected in three

CS1 courses at three institutions as described below and
summarized in Tables 1 and 2. We were opportunistic: In
one context, we happened to already have data available
from an unrelated project, and in the other two contexts, we
introduced the Rainfall Problem to an ongoing CS1 in a way
that was deemed appropriate by the teacher.

4.2.1 Context 1: Aalto University, CS1 for Engineers
We studied a large-class CS1 for students who major in

various branches of engineering (excluding computing). Most
of the students had little to no prior programming experience,

and their degrees typically require only this one course. In
Spring 2013, the course consisted of nine weeks of lectures
(4 hours per week) which ran in parallel with nine rounds of
programming assignments.

Students worked on the assignments in open labs at their
own pace but with weekly deadlines. Help was available from
undergraduate teaching assistants on request. In terms of
content and ordering, the course is a very traditional CS1
that starts from variables, operators, and selection, then
turns to iteration and functions. Examples that computed
the average of inputs, one of which was a simpler variant
of the Rainfall Problem, were used during the early weeks
(roughly two months before our data collection). All the
programming assignments were closed-ended: They required
students to write small programs that produced console
output as specified. Students submitted their programs to a
web-based system for instant feedback on functionality and
automatic marking. To pass the course, the students had to
gain at least half of the available marks during each of the
first eight weeks. The present authors were not involved in
teaching this course.

90

Table 2: Results from publications/data sets listed in Table 1

So
ur

ce

C
oh

or
t

N
um

be
ro

fS
tu

de
nt

s
pa

rti
ci

pa
te

d/
su

bm
itt

ed

N
um

be
ro

fs
tu

de
nt

si
n

co
ur

se
/c

la
ss

/to
ta

l

Fu
lly

co
rre

ct
pe

rc
en

ta
ge

N
EG

A
TI

V
E

re
qu

ire
d

Fu
lly

co
rre

ct
pe

rc
en

ta
ge

N
EG

A
TI

V
E

no
tr

eq
ui

re
d

*

C
or

re
ct

w
he

n
D

IV
ZE

R
O

ig
no

re
d

N
ea

rly
co

rre
ct

7)

pe
rc

en
ta

ge

N
o

co
rre

ct
su

bp
la

ns
/

N
o

(p
er

tin
en

t)
co

de

A
ve

ra
ge

pa
rti

al
sc

or
e

Se
tti

ng

(T
)a

ke
-h

om
e

/(
L)

ab

M
at

er
ia

l/
H

el
p

A
va

ila
bl

e

Ti
m

e
lim

it
(m

in
s)

/(E
)x

am

Pa
pe

r/
C

om
pu

te
r

C
(o

m
pi

le
r)

/I
(D

E)

In
ce

nt
iv

e

N
ot

es

Context 1 151 > 550 45 % 66 % +37% 0 % 88 % S L N 60 C I PR
Context 2 192 243 53 % 70 % +36% 1 % 89 % A T M U C I P
Context 3 165 236 72 % 77 % +20% 0 % 94 % A T H,Pair U C I P
T1 61 154 54% 1) 74%1) A T M U C? ? G?
T1Acc 44 44 39% 1) 52%1) A T M U C? ? G?
T2 63 224 11% 1) 22%1) E n/a N E P? n/a G?
T3Non 43 65 2% 1) 14%1) A L H 10 C? ? G?
HS 7 7 0% 1) 5%1) A L H 20 C? ? G?

Porter et al. [17] >1002) >1002) n/a ? ? ? ? 6) E n/a N E P? n/a G
Simon [19] 149 ? 0 % n/a ? ? 36 % 23 % E n/a N 9) P n/a G

Venables et al. [29] 32 ? n/a 19 % ? +3% 18% 48 % E n/a N E P? ? G
2007 45 31 % 49 % ? 69 % N
2003 42 2 % 24% 2% 57 % N?

Guzdial et al. [9] 113 120 12%** n/a ? ? ? 46%** E n/a N E P? n/a G
Pascal 20 5% +5%
C 20 20% +0%
Fortran 20 20% +0%
Lisp 20 15% +10%

206 206 11 % n/a ? ? ? ? ? ? ? ? C C ? 10)

CS1-Pascal 58 14 %
CS1-Pascal-L 58 24 %
CS2-Pascal 53 36 %
CS2-Pascal-L 59 61 %
Novices 23 31 n/a 39 % 39% 3)

Intermediates 43 52 n/a 42 % 42% 3)

1) Information received via personal communication with author M Materials available
2) The number of students was not reported but scatter plots have at least 100 data points n/a Not applicable
3) DIVZERO was not required Pair Pair programming allowed
4) Only programs with a clear plan structure included (187 submissions) H Help available
5) For exact error counts per language construct see [4] 8) Material demonstrated loop constructs

N Nothing Reward
* Negative values were not filtered (interpreted as sentinels, zeroes, or valid values) Setting P points (fixed)
** Without sentinel E Exam G points (graded)

A Assignment R reward (e.g. money)
6) Total median 8 out of 10 for two assignments (one of which was Rainfall) S Study Time limit
7) in addition to (either of) the fully correct precentages Q Quiz U Unlimited time

E Within exam
9) Exam 3 hrs, some 20 min for this task in

particular [personal communication]
10) First syntactically correct

U

? P n/a N

Results Material/help available

n/a
? ?

Soloway et al.
[24] ? ? ? Q n/a N

? S n/a M8) U P

C ?

Johnson et al. [12, 13]

Soloway et al.
[22] ? n/a ? ? ?

? S n/a ? ? C

N P n/a

Ebrahimi [4] ? n/a ? 5)

De Raadt [2] ? n/a ? S n/a

Results Experimental Setting

This Article n/a

Fisler [6] n/a +21-23%4) 3-6%4) ?

Data collection: Rainfall data was collected near the end
of the course, as part of another, broader research effort.
Volunteers received a small bonus to their course assessment
plus a movie ticket. Instructions were given on paper by a
research assistant. Students used a university computer to
solve the problem, which they had to do without recourse
to a textbook, the Internet, automated tests, or other re-
sources. The problem statement contained a reminder of
the library functions that they could use to read and parse
input. A time limit of approximately one hour was given;
apart from that, students were free to decide for themselves
when they were finished. The reward was given irrespective
of success or lack thereof. Of the over 500 students in the
course, 151 participated. The participants scored slightly
lower on the CS1 examination than the non-participants, but
the difference was not statistically significant (non-normal
distribution; Wilcoxon rank-sum test, p ≈ 0.20).

4.2.2 Context 2: University of Helsinki, Generic CS1
We studied a seven-week CS1 in Java, open to all students

of the university. In Fall 2014, about 40% of the students
were first-year CS majors, for whom the course is mandatory;
the others had elected to take it. Most of the students had
no prior programming background.

The first three weeks focused on imperative programming:
Students practiced writing dozens of small programs using
variables, iteration, methods, lists, and console I/O. Later, ob-
jects were introduced and students practiced writing object-
oriented programs to an input-output specification. Several
assignments featured elements of the Rainfall Problem, such
as averages. The course had a weekly 2-hour lecture, but
most student work was done either at home or in class under
the guidance of undergraduate TAs. Most programming
assignments were closed-ended, and over 90% of them were
computer-assessed, with instant automatic feedback avail-

91

able. One of the authors of this article was the teacher of
the course.

Data collection: The Rainfall Problem was the first pro-
gramming assignment of the seventh week of the course, and
was handed out with the other programming assignments
for that week. Contrary to most of the course assignments,
the problem was not automatically assessed, and the prob-
lem statement indicated that the student could submit their
solution regardless of whether they created a fully working
solution or not. Students received a minor amount of course
credit for submitting any attempted solution. The students
could attempt the problem at home or in class, and had
access to the Internet and course materials, but the teaching
assistants were instructed not to help students with this prob-
lem. No time limit was imposed. Out of the 243 students
who started the course, 201 were active during the final week
and 192 of them submitted a solution to Rainfall.

4.2.3 Context 3: Tampere University of Technology,
Generic CS1

We studied a Python CS1 that is mandatory for almost
all students of the university, regardless of major. The
majority of the course participants had no prior programming
background. In Fall 2014, 236 students started the course,
about 55% of whom were CS majors. 165 students submitted
Rainfall. The course lasted 14 weeks.

The course used a flipped classroom pedagogy and an
imperative approach to programming. Averaging programs
were used as examples within the supplementary course mate-
rials, which were partially the same as in Context 1. Students
worked mostly at home or in class under the guidance of
undergraduate TAs. They needed to solve multiple small
programming assignments every week, all of which were auto-
matically assessed with instant feedback. One of the authors
of this article was the teacher of the course.

Data collection: The Rainfall Problem was the first weekly
programming assignment of the fifth week of the course. At
this point, the course had covered I/O, variables, loop struc-
tures and functions; lists had not yet been covered. The
students worked on the problem when and how they wished,
much as in Context 2, and could use any resources they
wished. Working in pairs was allowed but fairly uncommon.
In this context, automatic feedback was available, and stu-
dents could submit a solution as many times as they wanted
in order to receive a report from a suite of tests. Not all cor-
ner cases were tested by the test suite, but the students were
not informed of the deficits in test coverage. We analyzed
each student’s final submission.

4.3 Analysis
To answer our third and fourth research questions (overall

success rate, relative difficulty of subgoals), we needed to
locate the bugs in the student programs and determine which
subplan each bugs was associated with. We analyzed each
solution in terms of the six subgoals of the Rainfall Problem
that we listed in Section 2 and which were also used by
Fisler [6]: Sentinel, Negative, Sum, Count, DivZero, and
Average. We focused on these six subgoals and ignored
the I/O aspects of the programs (which, anecdotally, had
extremely few bugs); these subgoals are shared by both the
console I/O and function variants of the Rainfall Problem.

In each student program, we searched for the subplans
that corresponded to the six subgoals, and classified them as

Correct (i.e., fully functional), Incorrect (i.e., an attempt to
address the subgoal, but with one or more bugs) or Missing
(i.e., no evidence of an attempt to address the subgoal). We
did not use a more fine-grained bug classification scheme such
as the one used by Fisler [6], with one exception: For the
DivZero subgoal, we noted which solutions were otherwise
correct but had failed to address the corner case in which
all inputs are negative and hence invalid.1 Coding this bug
separately enables us to estimate how many of the students
would have been able to solve the easier variant of the Rainfall
Problem that did not require Negative.

As noted in Section 3, some earlier researchers have counted
“spurious code,” i.e., unnecessary additional code, as a bug.
We considered such code a flaw in style and focused only on
bugs in functionality. Here are some other decisions that we
made, largely in line with the earlier literature:

• We ignored the few minor syntax errors that we found.

• An empty submission counted as having all subplans miss-
ing.

• We considered it OK to use all the values from 999999 up
(rather than just 999999) as sentinels.

• Discarding zeros as invalid was a bug in Negative.

• Reporting “No input” if all inputs were zero was a bug in
DivZero.

• If a subgoal was made easier because another subgoal had
not been attempted, we gave the student the benefit of the
doubt and only penalized them for the missing subgoal.
For instance, not attempting to filter out negative values
eliminates the possibility of certain bugs in DivZero.

• Even if a bug in one plan affected the result of other
plans, we only counted the bug once. E.g., if a bug in
Sentinel causes the program to incorrectly ignore some
inputs, it also impacts on the end results of Sum, Count,
and Average. Still, if those other plans were otherwise
fine, we counted them as Correct.

• In the case of Java programs, we coded as Correct the seven
solutions that divided a double by zero (which evaluates
to Infinity) before checking the result of Count.

The programs were coded by three of the authors while
the others cheered them on from the sidelines. To assess
inter-rater reliability, we initially chose 10 random programs
from each context, 30 in total, all of which were coded by
the three researchers. Only a low degree of reliability was
reached: the multivariate iota [11] of the categorization of
the plans was 0.18 (p < 0.05). After discussing points of
disagreement, a different set of 30 random programs was
selected and analyzed by the same authors. This time, an
iota of 0.66 (p < 0.05) indicated a good level of agreement.
The three researchers then split the remaining programs
between them and coded them separately.

An analysis of how students had implemented and com-
bined plans was also carried out and will be reported else-
where, along with findings from additional contexts. Most
solutions in the three contexts discussed here were of the
“Single Loop”[6] variety, in which the plans for the Sentinel,
Negative, Sum, and Count subgoals (at least) are merged.

5. EMPIRICAL RESULTS
1This is the fairly common bug coded as Missing–Guard–
Partial (X-G-P) by Fisler [6].

92

5.1 RQ3: Overall Performance
Figure 1 summarizes the students’ success levels on the

Rainfall Problem. As shown in the figure, the proportion
of fully correct solutions, that is, programs in which all
six subplans worked, was 45.0% in Context 1, 52.6% in
Context 2, and 72.1% in Context 3. Looking at “almost
correct” solutions, in which all but one subgoal was correctly
addressed (i.e., the sums of the two leftmost bars in Figure 1),
the percentages rise to 82.1%, 89.1%, and 92.1%, respectively.
The average numbers of correct plans for each context were
5.25 (σ = 0.79), 5.34 (σ = 0.92), and 5.61 (σ = 0.76),
respectively. A Kruskal-Wallis test indicated no significant
differences between Contexts 1 and 2 (p > .05) in terms of
the number of subplans correctly implemented; Context 3
had more correctly implemented plans (p < .05).

Context 1 Context 2 Context 3

0

25

50

75

100

0123456 0123456 0123456

%
 o

f s
tu

de
nt

s

Context 1 Context 2 Context 3

0

25

50

75

100

012345 012345 012345

Figure 1: The proportions of Incorrect or Missing
subplans. The results for the full problem version
are shown on the left and the sans-Negative results
(see the body text) on the right.

As noted in Section 3, some variants of the Rainfall Prob-
lem do not require students to omit negative numbers. For
this reason, we counted the number of fully correct solutions
so that we ignored Negative entirely as well as the corner case
in which all inputs are negative (which otherwise counted as
a bug in DivZero). This produces a lower-bound estimate of
how well these students would have been able to solve the
easier variant of the problem. As Figure 1 also shows, the
proportion of fully correct answers by this metric is in the
66% to 77% range, rising to about 95% across the board if
we allow one incorrect or missing subplan.

5.2 RQ4: Individual Subgoals
Table 3 shows statistics for each subgoal.
The DivZero plans had the most issues in every context:

44%, 26%, or 24% of the solutions either did not have a plan
for this goal or had a buggy one. The second most difficult
plan was Negative.

The remaining subgoals — Sentinel, Count, Sum, and
Average — were correctly addressed in the vast majority of
student programs.

6. DISCUSSION

6.1 Success Rates in Our Study
The students’ overall performance was reasonably good in

the three contexts that we studied. The lowest percentage of
fully working solutions was in Context 1, which placed strict
limitations on outside help and time, and even there roughly

Table 3: The six subgoals listed from most difficult
overall to least. The percentages of missing and in-
correct plans are shown; M stands for Missing and
I for Incorrect.

Context 1 Context 2 Context 3
Subgoal M+I M I M+I M I M+I M I
DivZero 44.4 7.9 36.4 25.5 11.5 14.1 23.6 0.0 23.6
Negative 17.2 4.0 13.2 25.5 16.1 9.4 9.1 0.0 9.1
Sentinel 9.3 0.0 9.3 6.8 1.0 5.7 2.4 0.0 2.4
Count 3.3 0.0 3.3 4.7 1.6 3.1 2.4 0.0 2.4
Sum 0.7 0.0 0.7 1.0 0.5 0.5 1.2 0.0 1.2
Average 0.0 0.0 0.0 2.1 2.1 0.0 0.6 0.0 0.6

half of the students succeeded. Allowing for a single bug,
more than 80% of the students succeeded in all three contexts.
If we ignore omissions and errors that are obviously related
to filtering out negative values (which is not required in all
variants of Rainfall), a large majority of all the students
solved the problem correctly and nearly all were at least
close.

These figures contrast with the low success rates reported in
some of the earlier studies and provide further evidence that
acceptable levels of success on Rainfall are being achieved in
some contexts. They also illustrate that such results are not
limited to a specific programming paradigm or pedagogical
approach such as functional programming.

6.2 Possible Factors Behind the Success Rates
There are a great many factors that affect the results.

The problem statements we used (which were detailed, with
example runs) may have made the problem easier than in
some other studies. The student populations will have been
different. The fact that some other researchers have counted
unnecessary code to be a bug complicates comparisons. Etc.
Although we cannot be sure which factors are the most
significant, we can put forward some hypotheses that are
compatible with our survey and our empirical findings.

The pattern of results was similar, perhaps surprisingly
similar, across all our three contexts. While this is likely to
be explained in part by similarities between the universities
and student backgrounds, it makes sense to also consider the
pedagogical commonalities between the three CS1s. These
include:

• The students could attend open labs.

• They had numerous weekly programming assignments.

• Those programs used console input (as did the Rainfall
variant we used).

• The students’ marks depended crucially on completing the
assignments.

• The assignments were automatically assessed, with instant
feedback on functionality.

• Each of the courses is based on custom materials created
by university teachers rather than relying on a textbook.

None of the courses features functional programming and
in this respect differ markedly from the contexts studied
by Fisler [6], who also reported fairly high success rates on
Rainfall. The students had not received explicit instruction
on problem-solving patterns, as the higher-achieving students
in de Raadt’s [2] study had. However, the students in our
study did have the advantage that they had been exposed
to very similar albeit simpler examples of summing and

93

averaging earlier during CS1. This will have helped them
to form problem-solving schemas that are suited to Rainfall;
moreover, students use examples they have seen as templates
for solving problems [16]. In Contexts 2 and 3, the students
had access to course materials and may have copied parts of
the solution from the materials (or other sources).

The highest success rates that we observed were those in
Context 3. This result is likely to have been affected by the
automatic assessment and feedback that was available to
students in that context (cf. [28]). Pair programming may
also be a factor here, although most students in Context 3
appear not to have worked in pairs despite it being allowed.

The amount of programming practice that students gain
during CS1 significantly impacts their learning outcomes [10],
and we suspect that this is a major factor behind some of
the Rainfall success rates. The students we studied, for
example, had spent many dozens of hours working on CS1,
with most of those hours spent on concrete programming
practice. The CS1s in many other Rainfall studies may
have had a lesser weekly workload in general and a lesser
requirement for programming practice in particular. We
suggest that in future studies, a focused effort is made to
estimate and report the hours that students have actually
spent studying and programming in CS1. Where possible,
researchers should also quantify students’ pre-CS1 practice.

The students that we studied are fairly strong in terms
of academic achievement and, perhaps, study skills. This
can explain the findings to some extent. Then again, it is
unlikely that, say, the original participants from Yale, who
had trouble with Rainfall, were weak students either.

6.3 Difficult Subgoals
The same subgoals caused students difficulty in all the

three contexts. The subplans that were most commonly
missing or incorrect were those related to missing input
(DivZero) and the filtering of invalid input (Sentinel). One
of the more common bugs involved a combination of the two:
the program crashed on all-negative input. Other typical
bugs included reporting “No input” when all inputs were
zero, and filtering out zeros. Bugs in other subgoals were
rare. In broad terms, then, the students usually succeeded
in producing a program for averaging inputs, but fairly often
failed to deal with one or more special or corner cases.

The students in all three contexts had practiced or at
least seen sums, averages, and sentinel-controlled loops, but
filtering out invalid inputs (as in Negative) was not a familiar
pattern from CS1. This will have impacted on the results to
some degree.

The fact that Context 3 had no Missing subplans at all
was presumably due to the immediate automatic feedback
that informed students of missing parts of their solutions.
Context 2 had more missing plans but fewer incorrect plans
than the other contexts, a result that we are not able to
fully explain. The disproportionately high number of Nega-

tive subplans that were Missing in Context 2 may partially
explain the relative infrequency of DivZero-related bugs in
that context (as not attempting Negative makes DivZero

somewhat easier).
The DivZero and Negative subgoals have also been chal-

lenging for students elsewhere who worked on other variants
of the Rainfall Problem. This is illustrated in Table 4.

Table 4: Aspects of Rainfall solutions in our con-
texts (C), Fisler’s study [6], and Simon’s study [19].
(Adapted and extended from [6].)

Simon Fisler C1 C2 C3
Sentinel OK 22% 81–90% 91% 93% 98%
Sum OK 21% 85–89% 97% 95% 98%
Negative OK 40% 57% 83% 75% 91%
DivZero OK 0% 55-61% 56% 75% 86%

6.4 Problem Statements and Testing Skills
Our results, together with those of Fisler [6], show that

even students who are largely able to solve Rainfall frequently
struggle with special cases. That special cases account for
many bugs is of course entirely unsurprising, but it is useful
to be reminded of this fact in the context of the Rainfall
Problem. The problem does not only require the student
to write code but also to form an understanding of the
problem in the first place, to pay attention to specifications,
to assess which special cases they are expected to cover, and
to evaluate their eventual solution.

The danger of students’ alternative interpretations of tasks
has been noted by other Rainfall researchers: Spohrer [25],
for instance, reported that two common alternative interpre-
tations were to leave out the loop or to misinterpret the type
of validation required in DivZero and/or Negative. In our
study, despite the fairly high student performance overall,
input validation bugs were common, and we were left with
the impression that some of the participants who had bugs
in DivZero or Negative would have been able to implement
those plans correctly if they had realized what the intended
goal was.

Some students will have read the problem statement care-
lessly. Some may have simply assumed that it did not matter
how, say, all-negative input sets were handled (not explic-
itly covered by the problem statement). It also seems likely
that many of the bugs were left in the students’ submissions
because of the students’ poor testing skills or disinclination
to test their programs carefully. Future studies could try
to draw these aspects apart. How much do students test
their programs? Do students fully understand the problem
statement? If we first make sure they do, how hard is the
Rainfall Problem then? Do students have more difficulty
in realizing the existence of a corner case than in fixing it?
Does the use of automated assessment in a CS1 have an
effect on these difficulties? We second Fisler’s [6] suggestion
of studying the test cases that students produce, which could
shed light on some of these issues; we additionally suggest
logging students’ testing behavior within an IDE.

A related issue is whether researchers have unintentionally
made Rainfall harder by using an ambiguous problem state-
ment and expecting students to interpret it in a particular
way.2 Especially in an artificial, context-free laboratory as-
signment such as Rainfall, it may be unrealistic to expect CS1
students to spontaneously realize (or even agree about) the
need to cover special and corner cases beyond those explicitly
demanded, unless their CS1 teaches and routinely expects
such practices. In fact, there is evidence that experts who are
given the Rainfall Problem sometimes implement only those

2Some of the studies have explored students’ strategies or
bugs rather than success rates. An unambiguous problem
statement may not have been necessary or even desirable for
all research purposes.

94

input validation features which are detailed in the problem
statement [2].

6.5 A Remark on Code Quality
Although we have established that, for the most part, the

students in this study produced programs that work, many of
the working solutions, too, left a lot to be desired. Formatting
issues aside, the programs commonly had poor organization
and the subplans were haphazardly glued together. Many
programs gave us the impression that if there had been just
one more requirement and the student had had to merge in
one more subplan, they would have been likely to struggle
and produce a bug. This observation, together with the
results from the study, suggests to us that these courses,
and other similar contexts elsewhere, would benefit from
a concentrated effort to improve students’ skills in testing,
specification, plan composition, functional abstraction, and
coding style.

6.6 Survey of Rainfall Results
Our review of the Rainfall Problem in Section 3 demon-

strates that the studies differ from each other in terms of a
vast number of potentially significant factors. These factors
relate variously to research design and implementation, the
participants, the differences in the goals and pedagogies of
introductory computing courses, as well as the use of different
variants of the problem.

Although some of the success rates on Rainfall have been
low, this is not the case in all studies, including our own.
This, in combination with the small number of studies and
the great differences between them, means that no big picture
emerges from the literature concerning the difficulty of the
Rainfall Problem for CS1 students. This is, unfortunately,
the main overall finding from our literature survey.

Given this result, we believe that it is imperative to conduct
further research on the Rainfall Problem if the problem is to
be used as a credible benchmark. At least until such research
is carried out, statements about the difficulty of the problem
across many present-day CS1s require qualification.

To reach a more nuanced understanding, future studies
need to report on teaching contexts and student demograph-
ics in detail. Our survey in this article contributes a system-
atic breakdown of potentially relevant variables for considera-
tion; we suggest that researchers who look into Rainfall report
on these factors at least. Studies could also be designed to
target particular variables.

6.7 Limitations of Our Study
Regrettably, we have not been fully able to follow our

own advice concerning the reporting of contextual informa-
tion. This is because of our on-the-fly data collection: We
have limited background information about the students and
can only roughly estimate the time they spent practicing
programming during CS1 before they tackled Rainfall.

Again because of the opportunistic way we collected data,
we have not been able to isolate individual factors as one
might in an experiment. Our three contexts are dissimilar in
a number of ways. Direct comparisons between them remain
rather speculative, as do comparisons between our findings
and those reported in the earlier literature.

Despite these significant limitations, we believe our find-
ings are valuable to the research community as they provide
further evidence of the wide variability in students’ Rainfall

performance and suggest several hypotheses. If similar re-
search is carried out in other contexts, meta-studies may be
conducted in order to draw firmer conclusions.

7. CONCLUSION
The Rainfall Problem is just one programming problem.

In and out of itself, it is unimportant. However, the problem
has proven popular among computing education researchers
and is sometimes cited as a sort of informal benchmark for
beginners’ programming ability, usually in order to emphasize
how students fail to solve the problem.

Our review of Rainfall studies, to which we have added a
new study, illustrates the great variability in both studies and
success rates across courses and institutions. In addition to
demonstrating that reasonably good success rates on Rainfall
can be achieved in imperative CS1s, we have drawn attention
to various confounding factors in Rainfall studies, such as the
amount of time students have spent on programming practice.
Moreover, we have highlighted that there are ambiguities
in Rainfall problem statements, especially with respect to
corner cases, which may in effect mean that students are
being assessed on their ability to guess the researchers’ or
teachers’ precise intentions.

These factors should be addressed in future studies and
eventually disentangled if the Rainfall Problem is to serve
as a useful indicator of programming ability. In any case,
complementary problems and metrics are also required.

8. ACKNOWLEDGMENTS
We thank Kerttu Pollari-Malmi for letting us study her

students. We thank Teemu Sirkiä and Timi Seppälä for their
help with data collection.

9. REFERENCES
[1] S. P. Davies. The role of notation and knowledge

representation in the determination of programming
strategy: A framework for integrating models of
programming behavior. Cognitive Science,
15(4):547–572, 1991.

[2] M. de Raadt. Teaching Programming Strategies
Explicitly to Novice Programmers: Can the Way We
Teach Strategies Improve Novice Outcomes? Verlag Dr.
Müller, Saarbrücken, Germany, 2009.

[3] F. Détienne. Expert programming knowledge: A
schema-based approach. In J.-M. Hoc, T. R. G. Green,
R. Samurçay, and D. J. Gilmore, editors, Psychology of
Programming, chapter 3.1, pages 205–222. Academic
Press, 1990.

[4] A. Ebrahimi. Novice programmer errors: Language
constructs and plan composition. International Journal
of Human-Computer Studies, 41(4):457–480, 1994.

[5] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. The structure and interpretation of
the computer science curriculum. Journal of Functional
Programming, 14(4):365–378, 2004.

[6] K. Fisler. The recurring Rainfall Problem. In
Proceedings of the Tenth Annual Conference on
International Computing Education Research, ICER
’14, pages 35–42. ACM, 2014.

[7] M. Guzdial. From science to engineering — Exploring
the dual nature of computing education research.
Communications of the ACM, 54(2):37–39, 2011.

95

[8] M. Guzdial. Exploring hypotheses about media
computation. In Proceedings of the Ninth Annual
International ACM Conference on International
Computing Education Research, ICER ’13, pages 19–26.
ACM, 2013.

[9] M. Guzdial, R. Fithian, A. Forte, and L. Rich. Report
on pilot offering of CS1315 Introduction to Media
Computation with comparison to CS1321 and
COE1361. Georgia Tech report cited in [8], 2003.

[10] L. J. Höök and A. Eckerdal. On the bimodality in an
introductory programming course: An analysis of
student performance factors. In 2015 International
Conference on Learning and Teaching in Computing
and Engineering, LaTiCE ’15, pages 79–86, 2015.

[11] H. Jansson and U. Olsson. A measure of agreement for
interval or nominal multivariate observations.
Educational and Psychological Measurement,
61(2):277–289, 2001.

[12] W. L. Johnson and E. Soloway. PROUST: An
automatic debugger for Pascal programs. BYTE,
10(4):179–190, 1985.

[13] W. L. Johnson, E. Soloway, B. Cutler, and S. Draper.
Bug Catalogue: I. Technical report, Yale University,
YaleU/CSD/RR #286, 1983.

[14] S. Kalyuga. Schema acquisition and sources of
cognitive load. In J. L. Plass, R. Moreno, and
R. Brünken, editors, Cognitive Load Theory, pages
48–64. Cambridge University Press, 2010.

[15] K. B. McKeithen, J. S. Reitman, H. H. Rueter, and
S. C. Hirtle. Knowledge organization and skill
differences in computer programmers. Cognitive
Psychology, 13:307–325, 1981.

[16] P. L. Pirolli. Effects of examples and their explanations
in a lesson on recursion: A production system analysis.
Cognition and Instruction, 8(3):207–259, 1991.

[17] L. Porter, D. Zingaro, and R. Lister. Predicting student
success using fine grain clicker data. In Proceedings of
the Tenth Annual Conference on International
Computing Education Research, ICER ’14, pages 51–58.
ACM, 2014.

[18] R. S. Rist. Schema creation in programming. Cognitive
Science, 13:389–414, 1989.

[19] Simon. Soloway’s Rainfall Problem has become harder.
In Learning and Teaching in Computing and
Engineering, LaTiCE ’13, pages 130–135, 2013.

[20] E. Soloway. Learning to program = Learning to
construct mechanisms and explanations.
Communications of the ACM, 29(9):850–858, 1986.

[21] E. Soloway, B. Adelson, and K. Ehrlich. Knowledge
and processes in the comprehension of computer
programs. In M. T. H. Chi, R. Glaser, and M. J. Farr,
editors, The Nature of Expertise, pages 129–152.
Lawrence Erlbaum, 1988.

[22] E. Soloway, J. G. Bonar, and K. Ehrlich. Cognitive
strategies and looping constructs: An empirical study.
Communications of the ACM, 26(11):853–860, 1983.

[23] E. Soloway and K. Ehrlich. Empirical studies of
programming knowledge. IEEE Transactions on
Software Engineering, 10(5):595–609, 1984.

[24] E. Soloway, K. Ehrlich, J. G. Bonar, and J. Greenspan.
What do novices know about programming? In
A. Badre and B. Shneiderman, editors, Directions in
Human–Computer Interactions, volume 6, pages 27–54.
Ablex Publishing, 1982.

[25] J. C. Spohrer. MARCEL: Simulating the Novice
Programmer. Intellect Books, 1992.

[26] J. C. Spohrer, E. Soloway, and E. Pope. A goal/plan
analysis of buggy Pascal programs. Human–Computer
Interaction, 1(2):163–207, 1985.

[27] C. Taylor, D. Zingaro, L. Porter, K. Webb, C. Lee, and
M. Clancy. Computer science concept inventories: Past
and future. Computer Science Education,
24(4):253–276, 2014.

[28] I. Utting, D. J. Bouvier, M. E. Caspersen, A. Elliott
Tew, R. Frye, Y. Ben-David Kolikant, M. McCracken,
J. Paterson, J. Sorva, L. Thomas, and T. Wilusz. A
fresh look at novice programmers’ performance and
their teachers’ expectations. In Proceedings of the 2013
ITiCSE working group reports, ITiCSE -WGR ’13,
pages 15–32. ACM, 2013.

[29] A. Venables, G. Tan, and R. Lister. A closer look at
tracing, explaining and code writing skills in the novice
programmer. In Proceedings of the Fifth International
Workshop on Computing Education Research, ICER ’09,
pages 117–128. ACM, 2009.

96

View publication statsView publication stats

https://www.researchgate.net/publication/288002756

