
Chalice Clue Abstraction – Algorithm – Pseudo-Code NCCA

4 Chalices (ABCD) The Real Chalice is 101st in the sequence

ABCDCBABCD…. The Real Chalice is Chalice C.

Abstraction

We want to develop an algorithm that will solve the problem initially for 4

chalices and location 101. We should be able to change those initial

conditions and our algorithm should still work.

Some of the key components of the problem are :

• The number of chalices and the location of the real chalice.

• The rules for the pattern of counting the chalices are incorporated

into some data structure. For example an array, list or dictionary.

• Once the pattern is computed, the solution is easily read.

Writing your Thinking

Take 5 minutes to think about how you tackled this problem.

➢ Did you use pen and paper to help visualise

possible solutions?

➢ Did you break it down to a small number of

chalices first to make the problem easier to

understand?

➢ Did you look for patterns in order to make

predictions?

➢ Did you try different scenarios to verify your

solution worked?

Using Think-Pair-Share-Square (TPSS), go through how you and your

partner were thinking about how to solve the problem.

Write an algorithm to solve this problem in a

computational way.

Test your algorithm for different locations of the real

chalice such as 102,103,104 and 105.

Chalice Clue Abstraction – Algorithm – Pseudo-Code NCCA

Pseudo-Code

#Initialise the conditions

numberChalices = 4; realChalice = 101;

Create a list of 4 letters: chaliceList= [A,B,C,D] #’A’ is 65 in ASCII

#You could also create an alphaList [A,B,C,D, …Y,Z] and from that make a chaliceList

#Set up the pattern of counting the chalices

For i = 2 to 0 {

 Make a backward list of [C,B,A]

}

For i = 1 to 3 {

 Make a forward list of [B,C,D]

}

While length of chaliceList < 101 {

 Append backward list

 Append forward list

}

101st element of chaliceList will be the real chalice

An extension of the challenge

We could abstract our computational solution even further

away from the actual counting of the chalices, by using the

modular arithmetic solution (101 mod 6).

The user could just supply the 2 key components of the

number of chalices and the location of the real one, and the

program simply applies modular arithmetic. (In Python this is

101 % 6).

There is still one vital piece of the jigsaw missing when you

calculate the number 6. Can you write a program at this

slightly higher level of abstraction.

